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Abstract—Time-domain reflectometry (TDR) is one of the
standard methods for diagnosing faults in electrical wiring
and interconnect systems, with a long-standing history facsed
mainly on hardware development of both high-fidelity systens
for laboratory use and portable hand-held devices for field
deployment. While these devices can easily assess distaroe
hard faults such as sustained opens or shorts, their abilityto
assess subtle but important degradation such as chafing rerms
an open question. This paper presents a unified framework for

TDR-based chafing fault detection in lossy coaxial cables by

combining an S-parameter based forward modeling approach
with a probabilistic (Bayesian) inference algorithm. Resits
are presented for the estimation of nominal and faulty cable
parameters from laboratory data.

Index Terms—Bayesian, fault detection, S-parameters, time-
domain reflectometry (TDR), wiring.

I. INTRODUCTION

by eye or using automated software, for signal variatiorsedu
by potential faults.

Wiring fault detection using TDR has a long history,
where the detection of chafing is considered significantly
more difficult than hard failures such as opens and shorts
[3]. Over the last decade, many time-domain reflectometry
(TDR), frequency-domain reflectometry (FDR) and time- and
frequency-based investigations were published [3]-[@hofhg
these investigations and many others, the primary meafmanis
for automated fault detection is the application of a skdin
correlator, or matched filter, to detect fault location. ld+ a
dition, knowledge of the wire material parameters such as
permittivity and conductivity along with measurement getu
and impedance matching conditions are usually either asgum
known in advance, or fixed from baseline measurements.

Unfortunately, correlation methods generally fail to d¢te
small faults in practice for at least a couple of reasons.

HE Federal Aviation Administration (FAA), Naval Sys-First, when baseline measurements are available, they are
tems Air Command (NAVAIR) and National Aeronauticoften unreliable because of the continuously changing ca-
and Space Administration (NASA) have all identified wirdle characteristics and measurement conditions in the. field

chafing as the largest factor contributing to electricalivgr
and interconnect system failures in aging aircraft [1].tRer-

Second, matched-filter based techniques only provideirelat
information regarding fault severity in terms of the amydi¢

more, the detection of wire chafing is important becauseaf the fault signature, and its location in time. Translgtin
leads to more significant problems such as opens and shatiat information into thephysical fault geometry and its

This article provides a technically extended discussion

dfstance from the source again depends on foreknowledge of

results initially published in [2] on a new general method fathe channel properties. For the wire fault detection pnoble

characterizing wiring chafe detectability using time-dom

however, the channel depends not only on the same changes

reflectometry (TDR). Our approach combines physics-basidcable characteristics and measurement conditions fieat a
modeling of signal propagation through a faulty cable withithe baseline, but also on the location of the fault itselfeicv

a TDR setup, with a probabilistic inference method for rerigh-quality cable exhibits loss and dispersion effectat th
covering key system parameters, including fault locatiod a appreciably change the shape of the propagating signal wave
size, from measured data. The method further provides cleara function of the propagation distance. In essence, o do
uncertainty information regarding the estimated pararsetenot reliably know ahead of time the correct matched-filter to
without relying on linear model approximation techniquesise. Finally, because correlation-based detection metfed
Finally, it is flexible enough to apply to a variety of wiringto accurately account for these effects, they can not be used

types, measurement conditions, and arbitrary input iotey
tion signals.

to reliably answer basic trade-space analysis questiaisas
fault detectability versus distance.

TDR is an industry-standard method for diagnosing faults The method presented in this article overcomes the diffi-
in wiring systems. Intuitively, it works by applying an injpu culties with traditional approaches highlighted in thevioas

signal €.g, step, Gaussian pulse, pseudo-noste,) to the

paragraph. We begin in section Il by developing a framework

wire under test, which propagates as a wave along the litiased onscattering parametergor S-parameters) to build
When the main wavefront passes over a fault on the line, partcomputationally efficient yet accurate forward model for
of it is reflected and travels back to the input where it can b®w chafed shielding affects signal propagation, and thes t
measured. Finally, the measured response is diagnosker eimeasured TDR response. This model includes the key physical
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parameters contributing to signal loss and dispersiorcisffe
such as dielectric permittivity, finite metallic condudtyy and
source—cable impedance mismatch. In section 111, this fodwv
model is then combined with a general Bayesian probalailisti



inversion procedure, which enables robust fault parametegnere the dependence of the relevdfiparameters on the
estimation in the presence of measurement noise and initable length/ has been indicated explicitly for later conve-
model parameter uncertaintyg,, uncertainty in permittivity, nience. Adopting the standard textbook model for a coaxial
conductivity, impedance mismatchtc). In fact, this method transmission line (see, for instance, [13], p. 551) oneinbta
simultaneously estimates not only fault location and size, .
i i So(l) = e M (2)

but an entire set of key parameters affecting the measured 0 )
TDR response along with the corresponding joint unceraint
. : o . . where
information, which in turn enables a reliable charactdiiza
of trade-space issues. Finally, in section IV, example [tgesu 1 weg (11

o A o k(w) ~ wy/ —/— [ -+=]. (3
characterizing fault detectability in RG58 coaxial cable a (@) = wy/poea + 2In(b/a)\ jo. \a 3 ®)
presented. In summary, our approach combines a physics- ) .
based model with a Bayesian probabilistic inversion metho (3). a andb respectively denote the radius of the core and

and this approach has found success in other TDR appliﬂ%@ (inner) radius of the shield, both of which are assumed to

tions, for example see [10], as well asrimanyother fields, Nave a (finite) conductivity., while ¢4 denotes the permittiv-

To keep the presentation clear and concrete, our metH dOf the insulator se.paratlng the two conductors, andis )
is explained in terms of a simple example involving a singl € vacuum permeability. W(_a W'.” al_so need the characterist
chafing fault in coaxial cable. However, it should be Cleawnpedance of the cable, which is given by
throughout that this example is easily generalized to Fandl In(b/a) k(w)

a wide variety of wire types and fault conditions, simply Zo = o
by substituting the appropriaté-parameter models for the
particular types of cable and fault under investigation. In The above formulation relates the key cable parameteys (

addition, a new effective TDR hardware model is derived th@fd Zo) directly to the “constitutive” parameters{ and ¢4),
may be common to many systems. and is therefore preferable to the distributed RLCG paramet

Finally, before moving on, we admit up front that thenodel that is more commonly found in textbook treatments.

fault parameter retrieval method presented here is not weinally, with this model and all that follows it is assumed
suited for practical application in the field, because it ithat the material resonances of the insulator lie well alibee
computationally too expensive and hence slow (at the pteséigquency range of interest (say, DC to 10 GHz), and theeefor
time). However, the method is important because it enablé permittivity is taken to be a real-valued constant. Thus
a general characterization of fault detectability in a widée attenuation and dispersion of signals along the calsle ar
variety of wiring systems using virtually any TDR hardwarélue solely to the finite conductivity of the core and shield.
measurement setup and input interrogation signal. As sheh, One could, of course, employ a suitable complex-valued,
approach presented here can be used to establish fundamdfgguency-dependent parametric model for the permifivit
limits on fault detection performance in advance of furthéfhould the dielectric loss be deemed necessary to include in
hardware and software development cost. the model.

(4)

wWeq '

Il. FORWARD MODEL FORTDR B. Impedance Step

This section describes our systematic approach to buileling |, this section, a model for an impedance step in the system
computationally efficient forward model for the interrogat is derived. Figure 1 illustrates the problem in a generitirapt
of a chafed coaxial cable using TDR. The modeling methoghe task is to determing,; givenTs, Z,, and Z;. First, we

of choice is theS-parameter formalism; the reader is referredefine the reflection coefficient caused by the impedance step
to [11], [12] for a refresher. Specifically, each cable Semme(for waves moving to the right):

is treated as a two-port device with 2ax 2 matrix of S-
parameters. Thesg-parameters are then combined in cascade r_ Zy— 2y [i]
to obtain the overall response of the system. In this process v+ 7y Vit v*:o.
one is aided by the formula 2
S0 9 T Using a voltage loop, it is easy to see that the transmission
Zlel 2 (1) coefficient must then be+I",. Combining these two facts, we
1 — Szl can write the following two equations for the voltage waves
which relates the reflection coefficients seen looking intentering and exiting the impedance step:
port 1 ("y) and out of port 21(2) of a two-port device within
a network. Vi =0V +(1-Ty)V,,
Vit = (L4 D)V —TLV;

I'y =511+

A. Coaxial Cable and from these two equations, the desired result is easily
For nominal (.e., unfaulted) segments of the cable, one hasbtained:
I's+1
S11 = S22 = 0, I' = TiT.0, (5)

Si2 = S21 = So(1),
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Fig. 1. Impedance step. F F b

C. Chafe Fault
) Fig. 2. (Left) A constant-impedance model for a chafed cai@gment.
A simple yet accurate model for th§-parameters of a (Right) Cross-section of a chafed coaxial cable.

chafed coaxial cable is now presented using an approactsthat

generalizable to other types of wiring. The situation oérest

is depicted in Figure 2, where a segment of lerigtiand width usually are). Finally, since this chafe model is symmetrie,
wp is chafed on a coaxial cable with characteristic impedanBave Si1 = S22, and .Sz, = Sia.

Z,. The chafed segment is modeled as having a constant ( We must next relate the hitherto unknown parameféss

z- andw-independent) characteristic impedarig. and v, to the geometry of the chafe’s cross-section shown
To derive S;; of the chafe, we conceptually match thdn Figure 2. This geometry depends on the conductor radius
coaxial cable impedance on the r|ght, and define a, inside shield radiuﬁ, and outside shield radius which
7 _ 7 are considered known for the cable under investigation. The
4o — 4R

g = ——7— fault impedanceZr and velocity of propagation, are both
Zo+ 2 functions of principally the chafe widthwr and dielectric

as the reflection coefficient for a wave traveling into the-sepermittivity ;. These functions are determined numerically

ond impedance discontinuity. Any wave transmitted througdy building lookup tables using a standard finite-differenc

this discontinuity will never return because the impedanggethod to solve forZr and v, over a grid of different

is matched. Now, if we movér meters to the left of the values forwy and ¢;. The theoretical underpinnings and

second impedance discontinuity to a position just after thige numerical implementation of this approach are presente

first impedance discontinuity the input reflection coefiitie in [14].! We have found that this simple rectangular chafe

will be geometry and lookup-table based approach are remarkably

[pe— 92t accurate for modeling practical chafes, which are typycall

wheret,, is the one-way travel time from the first to the secon@lPtical in shape.
discontinuity (.e., 2t; seconds pass as the incident wave
travels this distance, reflects from the second disconinuiD. Source Connection

and travels back). Clearly, = Ir/v,, Whereu, is the wave  |n this subsection, a simple source connection model is
propagation velocity inside the fault. The only remainingps derived. The situation is presented in Figure 3. Using the
is to cross the first impedance discontinuity. To do this, Wgefinitions shown on the schematic and a little algebra, it is

use equation (5) fronll-B, whereI'y = —I's. Thus, easy to show that
[y(e 72t — 1 -
Sll = Fl = —2( P ), (6) V_ — ZOF , (9)
1—F2€ J d VS Zo(1+r)+ZS(1—F)
where the first equality follows because the output impedanc Vo 14T\ V- Zo(1+47T) (10)
is matched. Vo \U T Vs  Zo(1+TD)+Zs(1-T)"

Next, we derive an approximation fék; by simply noting
that (1 — I';) times the incident voltage wave is transmitte%u
through the first impedance discontinuity, delayedtpyand
(1+T9) is transmitted through the second discontinuity. Thu

An important subtlety is that the net voltagé is mea-

red in the characteristic impedanZg, after any possible
impedance mismatch with the source. Since most TDR sys-
fems measure voltage with respect to the source impedance
So1 = (1 —T'3)e 9wt (7) rather than the line impedance, this important case isetdeat

- o "y in the next section.
This is an approximation because there are additional reflec

tions that ring within the fault.
The exact expression is derived by tracing the voltage waves T PR Hardware
as they reflect within the fault, and adding the transmittedsp A general model for the TDR hardware is shown in Figure 4.
of the delayed reflections together in an infinite seriessThin this figure, the “down-stream network” represents any
procedure produces wiring system that is defined by a characteristic impedance
N it Zy and a reflection coefficienf, at the system input. The
(1 —T3)eIwta (®)

1 —T3ei2wta 1The method presented in [14] assumes thatis equal to the nominal

. . . elocity of propagation on the cable, whichds1/,/ugeq. While this isnot
Note, this exact expression does prOduce nOt'Ceably be oretically true, the assumption seems to work reasgnabll in practice

results when the fault magnitudes are also small (and thieythe small chafe faults considered in this paper.

821 -
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Fig. 3. Source connection. —

v Fig. 5. S-parameter representation of a chafed coaxial cable.
M
ZS ‘ \ﬂafjth }

! . down-stream network Finally, we need to conveft,,, which specifies the transfer
o=+ Zy— VE _ Vo function between the forward and reverse voltage waves, int
! - e the transfer function between the net source sidgfahnd the

1 | measured net response signgl. With respect to Figure 3,
R ‘ T" is the reflection coefficient looking into the charactecisti
impedanceZ,. Since equation (12) already took care of the
TDR port impedance mismatch,, is looking into Zg, so we
can setZy = Zg for this final step in our development of the

goal is to determine the experimentally measured voltdge TDR hardware model. Thus equation (10) above simplifies to
in terms of the TDR source voltagé;. v G
. M
Good models for TDR hardware should incorporate three — = (1+Tm), (14)
: X ; Vs 2

practical effects: (1) the frequency-dependent impedanise o _ o
match between the source and the cable, (2) a measuren®éi@ also multiplying the system gain fact6f. Combining
delay time needed to account for signal propagatigthin €quations (12), (13), and (14) produces the TDR hardware
the TDR unit, and (3) a gain factor to account for a typicalljnodel given by (11).
small mis-calibration between the modeled and measured TDR
response voltages. The equation below for the net translt_er
function captures these effects: '

Fig. 4. TDR hardware model.

Model Synthesis

The pieces discussed separately above are now put together
H(w) = Vi - g (1 I's +To eﬂth) ’ (11) to obtain the sy_stem model shpwn i_n Figure 5. The model is
Vs 2 1+Tslo analyzed from right to left, starting with the load reflectico-
whereT's = (Zo — Zs)/(Zo + Zs) accounts for the port efficientl_“L = (ZL—ZO)/_(ZLJrZO). By repeated application
impedance mismatcht,; represents the one-way internaPf €auation (1), we obtain

del_ay, a_de_? is the gain factor used to account for poss_ible Ty = S2(dy)T'L, (15)

calibration issues. The key parameters for the TDR unit are S, T

thus seen to be the source impedaiige the internal delay ry =51+ %, (16)
— 02212

tar, and the gain facto6.
Equation (11) is derived by processing the schematic of

Figure 4 from right to left. To start, we need to deal Witr\‘/vhereso(l) is given in (2), ands;; are given in (6) and (8).
the fact thatl'y is specified With referen_ce tdy, while the Inserting these equations into (11), we obtainaaalytical
TDR voltage measurement is made with respecZio In  o|aionship between the TDR input and output signals, tvhic
other words, there is a possible impedance mismatch betweeRyicitly contains the various physical system and fait p
the TDR port and the downstream network. This is easilyneters discussed above. (The derivation is straighfiatw

accomplished by using the impedance step model presenfiedine result is too unwieldy to include here.) Rewriting X1
earlier withl's = (Zo—Zs)/(Zo+Zs). The updated reflection j, ha time domain. we have

transfer function after the impedance step is then

t
I's+1T op(t) = / h(t —t';0)vg(t') dt’ (18)
ry=—"——-—. 12 ; )
The next step is to incorporate the delay block, which reftnere thec(jjelpendence of thhe |rk;1puls_e (rje_:spdr;se the sev H
resents a time lag between the voltage measurement and%l\kgey model parameters has been indicated to motivate the

TDR port. This is also easy to do using the fact that a delay scus_sion i1l _ . _ _
time is equivalent to the following in the frequency domain:_ 1YPically, equation (18) is computed numerically using the
Fast Fourier Transform algorithm. Explicitly, given a sdt o

Ty = Dpe Iw2in, (13) time samplest, = kAt for k = 0,1,...,n — 1 (n odd),

Ty = S§(dp)T, (17)
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vti(w,0) v,

whereAt is the sampling period, the corresponding continuous:] A, Zo \ | ¢ | (B2 |
frequencies are given by: V= (w,0) ‘ ‘ ‘ ‘ ‘ V(@ D)
ZLAkt fork=0,1,...,(n—1)/2; Fig. 6. Block diagram of an arbitrary cable with fault.
W = (19)

20 k) for k= (n+1)/2,...,n — L.
Now that we have theS-parameters for the faulty cable,

Thus, if we assign the-dimensional vectors, the next step is to extend the formalism to include the source
ont = [oar(to)s var (1), -+ s var (tn1)]T (20) _and Fhe load impedance discontinuities. The S|tuat|_on_(nsvah
T in Figure 7. TheS-parameters for the system inside the
vy = [Us(to), ’Us(tl), - 7vs(tn_1)] (22)

impedance discontinuities are via:
H(0) = [H(wo,0), H(w1,0),...,H(w,—1,0)]", (22)
by = S1ia1 + Sizaz,
then, by = Sa1a1 + Sazaz,

oar(0) = FEL(H(0) O fft (vs)), (23) - | |
where S;; are given in (24). The goal now is to derive the

where we have used to represent an element-by-element-matrix S for the extended system, which is defined by the

vector multiply operation,H (w,#) refers to equation (11) equations:

evaluated at a particular set of model parameterand of _ o o

coursef ft andi fft represent the Fast Fourier Transform by = S1ia + Si2az,

algorithm and its inverse, respectively. The computatisn i by = So1Gy + So2to,

valid when the actual source signalrig\t-periodic and well

approximated by the sum of sinusoids with the angular 9Venwe knpvy theéS-parameters for the faulty caple and all the

frequenciess, given in (19) above. chafactenstlc impedances, 71, andZQ_. To do this, we refg_r
Finally, we note in passing that this modeling approaéﬁ Figure 1 and make use of the following boundary conditions

can be generalized readily to a cable with chafes (or otré@ready derived irgll-B) for the voltage waves traveling into
kinds of faults) at multiple locations, and in fact to araity and out of the impedance discontinuities on both sides of the

(25)

wiring networks. Most importantly, as the number of wirind@ulty cable:
and interconnect components grows, the computationaiteffo ,, — (1 + y)a, — T'1b1, as = (1 — Ty)ay + Labo, o6
needed to evaluate the model grows only linearly, and thep, — (1 )b, +Ty@;, by = (1 +T2)by — Doty (26)

memory resources needed stays roudhigd
To solve for theS-parameters of the extended system, we
G. Full S-parameter Model for an Arbitrary Cable with Fault start bX solving equations (26) faf;, az, by, andb in terms
of @1, a2, b1, andb,. Next, these results are substituted into

In the previous subsection, we showed how to derive theations (25), which are then solved for the elements of the
frequency-dependent input reflection coefficient for a @@ax y,4trix § obtaining:

cable with a chafe fault within a TDR setup featuring a sodrce
cable impedance discontinuity. In this section, we derhe t g  _ S+ T =TS — (511522 — S12591)2 27)

full S-parameter model for an arbitrary cable type (supporting 1+ 81111 — S2ol’s — (S11522 — S12521)'1 T2
a single mode of propagation) and with a generic fault, which Sia(1 = T1)(1 = Ts)
can be used in analyzing other types of measuremengs ( Si» = 12 ! 2 (28)

time-domain transmissometry) as well. 1+ 51l — 822 — (811522 — S12821)T1 2

Let us begin with the setup shown in Figure 6, which depicts_ Sor(1+T1)(1+Ty)
a fault wi_th two sections of possibl_y lossy cable attached_tog21 " 1+ Sl — S22l — (811852 — S12821)T1Ts
it. To derive theS-parameters for this faulty cable, the chain
scattering matrix approach is used [12]. With this approach§22 _ S =T —ThT%51 + (511522 — S12591)T' (30)
the chain scattering matriT for the faulty cable is readily 148111 = S2ol'y — (S11822 — S12521)'1 Iy

(29)

specified as To verify the equation forS;;, consider the case where
T— { (A21F51Bgy) ™! _A2_11F22B21F2_11:| I', = I'; andl; = 0. After substituting these values, equation
A21F2232_11F2_11 Ao Boq (F221 — F222)F2_11 ’ (27) becomes
whereA,,.,,, Finn, andB,,,, are theS-parameters for the first — S125911° 1

section of cable, the fault, and the second section of cable, Su=5u+

1 - SQQFL ’
respectivelyt. Converting the chain scattering parameters ba(\:/vlﬁwich is the same as equation (1) for the input reflection
to S-parameters, we get

coefficient given load impedancg€; and matched source
g [ A3, Fpy A21F21le] impedance (as it should be).
Ag1 Fo1 Bay FyB3 |- Use of the matrixS makes it easy to derive the in-
put/output voltage relationships with mismatched soumte a
2For a coaxial cable with a chafe fault, the matricks B, andF are to load impedances. This case occurs frequently in practieawh
be constructed with thé-parametersSy, S11, and S2; derived earlier. ever the wire impedance mismatches the source impedance.

(24)



@ a1 by B the optimal estimaté*, and to use the inverse of the Hessian
of —log Pr(6*|y) as an approximation for the covariance ma-
Z Zo S Zo Za trix, which quantifies the spread of the distribution [15, Gh
The second approach relies on the remarkable fact that ane ca
b1 b1 a2 a2 sample random vectors directly from the posterior distidu
vy 2. Pr(fly), and use a suitable measure of sample scatter to
T, = 20—=21 Ty — Z22=%20 . — . . .
1= ZoF 2, 27 Zy¥7zo  quantify the spread of the distribution, without making any

Fig. 7. Block diagram of a faulty cable attached to a sourat aoad. additional _GaUSSian qssumptions. This (_more generaBrlatt
approach is taken up in the next subsection.

Since the mismatch is now taken care within the S- B Markov-Chain Monte Carlo Estimation
parameter block we can consider attaching the source add loa_, . . . o .
Finding the optimal estimate and quantifying the uncetyain

to matchedimpedances. This means we can simply write: . o : .
associated with it are computationally challenging taskenv

VH0) = EVS (sinceZ, = Zg) the forward modeb,(6) is nonlinear ind, as in the present
2 case. Furthermore, in cases where the forward model is
V(0) = VH0)+V~(0) = 1 (14+511)Vs an algorithm (rather than a closed-form expression), it can
2 be prohibitively expensive to compute the gradient and the
V(1) = 0 (sinceZ, = Z1) Hessian of the cost function, which are needed to solve the
V)= VIO +V () = %gles- optimization problem (33) using traditional methods. Thais

natural approach for this type of problem is the application
of Markov-Chain Monte Carlo (MCMC) methods to obtain
I1l. PROBABILISTIC INVERSION a set of random samples drawn directly from the posterior
A. Bayesian Framework distribution, which are used to estimate the desired gtiesiti
y applying the law of large numbers. The underlying premise
or this approach is that, for sufficiently larg¥, a set of
mples

In this section, a probabilistic framework is presented fqr
inferring the fault parameters from measured TDR datatStar
ing with a sampled version of (18), the measurement proces

is modeled in the usual way as
. adequately captures the essential features of the pasterio

y=vm(0)+v, (31) distribution. Specifically, the sampl@, that maximizes the
where vy, € R"™ is the discrete modeled TDR responseosterior distribution provides us with a globally optimal
defined by equation (20), and calculated as a function e$timate, while the spread of thé samples around, may
the model parameter (and source interrogation signag) be taken as a measure of our uncertainty about this estimate.
using equation (23)y € R" is a vector of additive random More generally, the law of large numbers guarantees that
measurement noise; ande R" is the time series of voltage
samples forming the measured TDR signal. Z F(0) = E[f(0)] = /f(g) Pr(0]y) df (35)

Two probability distributions functions (pdfs) are nowrio# et

duced for the construction of a Bayesian inversion fram&wor
(1) the prior distribution Pr(#), which describes our state of
knowledge regarding the unknown model parameters befa

any measurements are made, and (2)litkedihood distribu- are the mearf (¢) = 6 and the variancg (9) = (9 — E [6])°.
. There are many different MCMC-based algorithms one
tion Pr(y|#), which specifies the probability of observing a

can implement to achieve the above sampling. The results
particular measurement for a given set of model parameters

Bayes’ theorem then gives thmsterior distribution for@ in présented irglV were obtained using a relatively new method
the form [15] called nested samplingThis algorithm is a natural fit for

solving the estimation problem posed in (33), while also

Or ~Pr(dly), k=1,2,...,N, (34)

as N — oo. Thus, the samples can be used to estimate the
e>éoected value of almost any function@fStandard examples

Pr(y|0) Pr(6)

Pr(dly) = (32) estimating other relevant quantities such as the integrtiie
J Pr(yl6’) Pr(0")do" denominator of (32), which does not influence the solution of
The maximuma posteriori estimate¢* is found by solving (33) but can be used for model selectiore( choosing the
the optimization problem best among competing forward-modeling schemes). A basic
summary of the nested sampling algorithm along with a few
maximize Pr(0]y). (33) key references are included in the appendix.

Furthermore, the shape of the posterior distribution adatin

indicates how confident we are in this estimate. There are two IV. RESULTS

typical approaches to quantifying the uncertainty represse ~ This section presents a couple of example results on system
by a general distribution lik®r(6|y), which depends heavily parameter estimation and chafing fault detection for-ia

on the nonlinear forward model (among other things). The firong RG58 coaxial cable with an open load conditide.(

is to assume the distribution is approximately Gaussiaorato Z; = o), along with a simulated result highlighting the



: . TABLE |
more complex nature of detecting particularly small faults PARAMETER PRIOR I NFORMATION

Like many other MCMC methods, nested sampling also tends
to be slow: it took around 8-10 hours to solve the estimation

. . . Param. | Distribution Description
examples discussed below on a 32-bit 1.8-GHz Linux PC. ; NTT o m cable length
dp U(,1) m distance to fault
A. Problem Setup lp U(0,50) mm fault length
Laboratory measurements were obtained using an Agilent| wpg | 4(0,2b) mm fault width
54754A digital TDR unit, which applies &.4 V, 40 ps rise €q N(2.25,0.2) relative dielectric permittivity

time, step signal to the line. The elements of the measuremen| o, NT(3
noise vector were assumed to be independent and identically | Zzs | N T

2) x 107 S/m | core & shield conductivity
50,2) source impedance

3,
(
(
(1,

distributed Gaussian random variables with zero mean and 4 ¢, N1(0.5,0.2) n measurement time delay
standard deviation of;; = 0.5 mV, a value roughly equal G N*(1,0.1) system gain
to the residual error standard deviation between the medsur
data and the optimal model fit. Under these assumptions, the TABLE Il
likelihood distribution is PARAMETER ESTIMATES+ 1 STANDARD DEVIATION
2 \—n/2 1 2
Pr(yld) = (2mon) : P {_E”y — o (6l } ’ Param. | Estimate Param. | Estimate
(36) dr | 6.010+0.034 m Ir | 145+ 1.9 mm

where = (I,dp,lp,wr,€q,0c, Zs,tr, G) is our vector of wp | 271 £0.10 mm s | 2242 +0.025
key model parameters, all of which were carefully defined™ 75019+ 0.008 x 107 S/m | Zs | 489+03 0
throughout section fl I | 7.02+004m tr | 0.552 +0.005 ns

The prior information is summarized in Table |, where = 5991 % 0.000
U(z,y) denotes the uniform distribution on the interyal y],
and Nt (u, o) denotes the normal distribution restricted to
nonnegative valueswith pdf

20 can be multi-modal, and this fact has important consequgence
Fx(a) = W, x>0 37) for fault detection. The final subsection provides an exampl
0, otherwise

where ®(z) = [1 + erf(z/v/2)]/2 represents the cumulative®- Chafing Fault Detection Example
distribution function of a standard normal random variable As anexample, our estimation procedure is applied to the si-
This prior specification represents information and ursiety multaneous retrieval of all parameters from a single messur
regarding the cable material properties and TDR equipmer®R response collected from7am long RG58 coaxial cable
specifications in aeasonablevay. For example, the nominalwith a single 10 mmx 3 mm chafe at a distance of 6 m from
values of 0. and e, are typically supplied by the cablethe sourc€.The optimal estimates are shown in Table Il, along
manufacturer, but the parameters oparticular cable may Wwith their corresponding standard deviations. Also, Fégér
deviate appreciably from the “batch” values, a fact cagtimg characterizes joint estimation performance between pairs
the specified prior probability distributions; the sameuangnt parameters. Note that the correlation between fault width a
holds for the TDR hardware parameters as well. fault length is expected since changing these parameters in
Before any measurements are made, our prior knowleddie forward model has roughly the same effect on the TDR
of each key parameter is assumed independent of the otfggponse. The model also explains the very strong cowelati
parameters, except for the distance to faultand cable length between the cable lengthand dielectric permittivitye,, since
I, which are jointly distributed according to both affect the total propagation time through the cabke, (

- - n ¢4 affects propagation velocity).
Pr(dp,1) = Pr(dp|l) Pr(l) = U(0,1) x N7(7,0.1). (38) Finally, with all the key model parameters inferred from

Thus, the pdf of the prior parameter vec®r(0) is simply data, we now use the optimal parameter estimates and the
the product of the distributions listed in Table I. With th&nown source voltage profiles(t) to compute the model-
likelihood and prior pdfs now defined, equation (32) prosidePredicted TDR signaly,(t). The result presented in Figure 9
the posterior distribution. Note that, even though stasidaghows nearly perfect agreement with the laboratory measure
likelihood and prior distributions were assumed, the meedr mMent, thus validating the accuracy of the forward model.
nature of the forward model,; (#) makes the posterior distri-

bution nonstandard.¢., not Gaussian, uniform, or any otherc_ A Multi-modal Example

textbook distribution). In fact, the general posteriottidigition The example in the previous section highlighted a case

3In practice, thelly — vas (6)]|? term in (36) is computed directly in the Where the fault signature was small, but visible by eye. As
frequency domain for each and thus does not require the Fast Fourier
Transform operations specified in (23) for each evaluation. 5Lab measurements were made using a tape measure for distafagt
4This is necessary to assure that the forward model is noti@eal with and cable length, and digital calipers for fault length anitittv These
non-physical values of its arguments during the Bayesifreénce process. measurements are all subject to some inaccuracy.
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Fig. 8. Example parameter estimation results and uncgytaimalysis. The star marks the posterior mode (the mostaptebestimate) and the circle marks
the posterior mean, while the confidence ellipse is the minirarea ellipse enclosing 95% of the most likely samplemfthe posterior distribution.
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Fig. 10. Actual model for the TDR response to a coaxial cabié & 6
mm x 2 mm fault, 6 m from the source, and simulated noisy measuatal d
) . ) ) o (model plus zero mean Gaussian measurement noiseayith= 0.5 mV).
Fig. 9. Model fit to the measured TDR signal using the optinstiheate for  E\en though the reflection signature is buried in noise, theimum posterior
0. The fit captures the variation in the measured signal toiwithstandard  ggtimate correctly characterizes it to the extent showniguirg 11.

deviation of 0.43 mV, and includes both the primary and the secondary

reflections from the chafing fault.

t ns

locations are also somewhat probable. In fact, that is jimsttw

shown in Figure 8, the posterior samples in that case 4f§ Posterior samples provide: a set of probable parameter
well modeled by a multivariate Gaussian distribution; antf!Ues given the assumed model and measured data.

thatis the standard treatment for a posterior distribution built N €losing, we emphasize these examples were selected to
around general nonlinear models, as in the present case. Fighlight the advantages provided by our probabilisticemv
approach, however, is not always appropriate. For exampié" @pproach using perhaps the simplest possixistic

Figure 11 presents the posterior samples frorsiraulated €x@mple: the detection of a single chafe in coaxial cable.
TDR response (again with measurement neige= 0.5 mv), In other wiring types, particularly non-impedance con&dl
to a 6 mmx 2 mm fault still located 6 m from the source Wire, the situation becomes more complex because changes

In this case, the fault signature is buried in the measuremdh impedance, usually caused by changing distance between

noise (see Figure 10), and the estimation procedure yieff'ductors (or ground plane) with distance, lead to adusdio

posterior samples that cluster around various possiblit faifflections that can mask chafing faults, an effect discussed
locations along the cable. Clearly, these samples are #btl3]- Our framework is adaptable to these cases by either

well described by a multivariate Gaussian distributionttse Parameterizing the effect and thus absorbing it into theefod

standard approach would yield very misleading results.sTh{" Py developing a noise model to represent a random (and
we can conclude that the standard method is inaccurate f§NCe unknowable) change in impedance with distance. While
assessing fault detectability at or near the limits of diec 1€ best way to actually accomplish this is an open research

The MCMC parameter estimation approach presented intﬁ?ﬁa’ the propab_ilistic inversion aproaCh discu;;ed 5 th
article naturally reveals the proper multi-modal disttiba by article would still rigorously characterize fault detdutiy (or

treating the full nonlinear model without further approsim Un-detectability) in these cases.

tion. In this particular case, Figure 11 shows that the pryma

mode of the distribution provides good estimates for thét fau V. CONCLUSION

location and length, but that is not known in advance. Given This article presented a composite forward model for the
the available measured data, prior information, and maded, TDR response of chafed coaxial cable, given the input signal
can conclude only that the most likely fault is at 6 m, but othe@nd a set of model parameters. The novelty in our approach



fault length vs. distance to fault Note, some of the material presented here is supplememtary t

these references.
To begin, we define the likelihood superlevel set = {6 :
Pr(y|0) > A} and associatedrior massfunction

£\ = /0 GA Pr(6) do. (39)

Thus,£(\) measures the amount of prior probability associated
: : - with the likelihood superlevel sed .

dp m Starting withn samplesdy, for k = 1,2,...,n, from the
Fig. 11. Fault detection example for a small chafe. In thisecéhe posterior prior distribution restricted tol, (I'e" Ok ~ Pr(@) givent €

samples, which represent possible fault locations andthengeveal an Ax), the core nested sampling algorithm is:
underlying multi-modal posterior distribution. While theost likely estimate, 1) Rejecte* — argmink Pr(y|9k)-

marked by the star, provides a good estimate of fault lonatind size, the 2) Set)\* — Pr( |9*)

posterior samples indicate a number of other possibiltties cannot be ruled - Yy : .

out given the measured TDR data. 3) Sample one new; ~ Pr(f) givenf € Aj-.

The output from this process is then the rejected sartiple

and a set ofs samples all in the new likelihood superlevel set
lies not in the application of electromagnetics$parameter 4,. - 4,, since one always has > A. Initializing A to zero,
based signal modeling, but in the identification of the impothe above algorithm is then repeated until a stopping éoiter
tant model parameters and system structure needed to ag§net, say aftefV iterations, and\ is updated to\* after each
rately represent the actual hardware measured TDR respoiggtion. The net result is then a set of rejected sam@les
in the simplest possible way. This was in fact the directltesiyng corresponding likelihood values for k = 1,2,...,N.
of a long process of trial and error with lab measured dagayr the results presented in sectighv, we usedn = 300,
— a full description of which the reader has been spareghd v ~ 23000, althoughN was determined by a stopping
The resulting model incorporates key practical effecthsa& criterion based on the numerical progress of the algorithm.
source—cable impedance mismatch, measurement delag] signit also turns out [15, Ch. 9] that each rejected santjle

loss and dispersion, changing cable characteristics, e ecorresponds to an unknown random amount of prior r§ass
some degree of mis-calibration. These issues are not specg(i)\z), but with known distribution, such that,

to the coaxial cable chafe fault detection example thiclarti
focused on, and are all important to the general applicaifon log &5 = SEAL \/E- (40)
TDR-based wiring fault detection methods in the field. n

The forward model was then combined with a Bayesiafhus, on average ¢; = e~*/", and this provides an esti-
inversion framework to formulate and solve the problemnate of the prior probability that € A,-. Now, the sets
of optimal fault detection and performance characterati By, = AA;; NAS. fork=1,2,...,N—1,andBy = Ay,

. . . . A k4+1 . .
using MCMC based techniques. Although this method ferm a disjoint partition of the sample spadg. Thus, if the
computationally slow, it handles general nonlinear modeli&elihood functionPr(y|6) is further assumed approximately
without further approximation; and this leads to an ac@iragonstant for all values of in each of these sétsone has the
characterization of estimation uncertainty that mostiti@aal  following approximation for the evidence integfal
methods can fail to provide. Experimental and simulation

TO SO

RIS

results highlighted this effect through two simple chafeltfa Z = / Pr(y|0) Pr(0) do
detection examples in coaxial cable. Furthermore, thiotet ZGAO

is optimal in the sense that, given the measured TDR response N .

no other detection method can find a more likely fault logatio - ; Pr(yl6i) 0EB, Pr(6) df

and size under equivalent condition®( same measurement N

hardware, input signal, noise, wiring systet). _ ZPI‘(UWZ) Pr(f € By)
Finally, the inversion approach is easily generalized to — '

handle a variety of parametric models, since the modeffitsel N

is viewed simply as an input to the inversion procedure. Thus ~ Z A B,

we have presented a truly generalized framework applicable 1

to the characterization of TDR-based fault detection for - N _

large variety of TDR hardware, wiring types, and networ herehy = (& —&iva) ~ Pr(f € By fork =1,2,... N =

,andhy = &x.
topologies. N = EN

At each iteration of the nested sampling algorithm it is
required to sample one new value from the prior distribu-
APPENDIX tion restricted to a likelihood superlevel sete( step 3).
NESTED SAMPLING
deln fact, for all 0 in each B, we have that\; < Pr(y|0) < A}

In this appendix we provide a brief summary of the nested, " _ _ : )= Tkl
. 'The idea behind this method of calculating the evidencegrateis a

sampling algorithm. A_complete descripti.on can be_ fo_und Wumerical version of the same basic idea underlying Lel#Esgheory of
[15], [16], and a more in depth mathematical analysis in [17htegration.



A variety of approaches are possible. The easiest way [ig]
by rejection sampling: sample values fraBr(#) until one

falls into the desired set. This approach however, becomes
extremely inefficient once the prior mass associated wih tfis]
likelihood superlevel sets becomes smaé.( as the algorithm
proceeds the superlevel sets are progressively reducedoan
is the associated prior mass). The approach we took was to
use then — 1 samples already available from the restricte@’]
region to form a multivariate Gaussian proposal distrituti
at each iteration (using the mean and covariance ofithel
samples). The proposal distribution was then used to otitain
desired new sample using the Metropolis-Hastings algorith
initialized to a sample selected randomly from the— 1
samples already available. Burnin period was also used to
help enhance the independence of each new sample.

The final step is to obtain the posterior samples. So far, w
have N samples); each representing a region with posterior
mass(A\;hy)/Z, for k =1,2,...,N. Thus, resampling from
this collection ofweightedsamples according their posterior
masses will yield the desired set einweightedposterior
samples i(e., samples that appear with the correct posterio
probability). Following [15,59.4.2], one can accomplish this
in an efficient way that ensures no repeats in the final list o
posterior samples.

[16]
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